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Motivation:

If Muon Cooling works one will be able to build a facility for leptons that can:

+ Collide leptons at 3 times the energy of the ILC.
+ Produce neutrino beams of unprecedented intensity and purity.

+ Produce high intensity proton and low energy meson beams for HEP

=» Access all HEP problems (3TeV., Collider, neutrinos, mesons, protons)
Supports a Fermilab scale facility for years.
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There are other general arguments for this work.

We don't want the success of future accelerator projects to be compromised
by inadequate knowledge of basic processes.

Understanding of operational limits of basic technologies is very primitive.

The increasing costs of facilities makes failures more expensive.

Long study has shown that the parameter space for producing useful linear
colliders is very small. Metal structures seem required to provide the beam
stability and wall plug efficiency.



MuCool work is directed at MICE (at RAL).

Muon Cooling, in Phase Space
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The Muon Ionization Cooling Experiment (MICE)
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- Needs: 1) Reach full £ field with 3 -5 T solenoid.
2) Reduce backgrounds in spectrometers.



We need to understand high gradients. Now.

+ MICE, and muon cooling, require high electric fields in high solenoidal fields.

» This physics/material science is not understood.
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The Breakdown Problem is very old.

Many have contributed - very early:
Paschen, Millikan Michelson, Lord Kelvin

In 1904, Lord Kelvin argued that: 500? g8 s © $\~° _
- Field emission is electrons (electrions), 400 | - 1
* Electron emission may imply ion emission (damage), 7 =~ °° s reskdown
* Local fields of ~ 9.6 GV/m would do this, g s !
- Tensile strength is an important parameter, ,3_ w015 1
* Better experiments are needed. : wo: :

2 - g :
We agree with him. 0 b
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Modeling is necessary.

- "About 30 years ago there was much talk that
geologists ought only to observe and not theorize; and
I well remember someone saying that at this rate a
man might as well go into a gravel-pit and count the
pebbles and describe the colours. How odd it is that
anyone should not see that all observation must be
for or against some view if it is to be of any service."

Charles Darwin, 1861
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Bureaucratic Problem: Funding is divided up.
» Individual Projects are funded.

- Each decides R&D priorities separately.

» Common problems suffer.
Big Engineering

$-' > project
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Can ILC and CLIC be limited by the same mechanism?

CLIC and ILC may be limited by the same mechanism, but the two problems cannot
be studied together - and aren't studied separately.
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What are the limits of acceleration technology?

» The conventional wisdom, Metals limited to 50 - 70 MV/m, seems wrong.
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- Limits are unknown, material science needed.



Our approach to breakdown, try everything

Part of the Neutrino Factory and Muon Collider Collaboration - Muon Cooling
- Experiments in Fermilab MuCool Test Area (MTA) , aimed at MICE

J. Norem, Argonne

A. Moretti, A. Bross, Z. Qian, B. Norris, FNAL

Y. Torun, IIT

D. Li, M. Zisman, S Virostek LBNL

R. Rimmer, JLab

R. Johnson, P. Hanlet, et. al, Muons Inc.

+ many others

- Modeling of breakdown and cavity parameters
Z. Insepov, A. Hassanein, ANL

- Surface studies with Atom Probe Tomography at Northwestern Univ.
D. Seidman, K. Yoon, NW

- 9th year of experimental program, 6th year with data.
- 59 pages published in referred journals.



RF experiments are in the

MuCool Test

Area (MTA) at Fermilab
N

805 MHz
Klystron

ed 201 MHz
Mucool Test Triode

Area (MTA) 100
- m

Fermilab Booster Fermilab Linac




Our 805 MHz program.

We have unique hardware, can study many variables:

Operation: 201 vs. 805 MHz.

Magnetic field: O -5 T solenoid on the 805.
Materials: Cu, Be, SS, Mo, Mo(alloys), W, Nb
High Pressure (Muons Inc.) H, and He
Window Geometry
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201 MHz Program.
- Conditioning / breakdown, window tests. 16 MV/m with B=0
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Innovations

- Simplified Fowler-Nordheim model
* Measurement of properties of emitters
on operating cavities
» Use of Atom Probe to study high fields
Useful for looking at oxygen in hiobium
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Atom Probe Tomography (at Northwestern)
* A systematic way of studying the effects of high fields on material.
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Our Model: Local fields + enhancements determine everything.
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The Process of Breakdown

» Field emission is the diagnostic.

* Fracture is the trigger.

- Field emission heating makes a lossy plasma.

* The lossy plasma directs the EM energy to the wall.

* An equilibrium state develops between the structure and the surface.
- Damage Functions: si(B), s2(f8), s3(B) describe the surface development.

- This is described in refereed papers and conference papers.

E Field Power density ~ 10> W/m’

\ &
Stress ~ 300 MPa N

Fracture Field emission heating Discharge



Damage spectra

N A
nitial distribution of
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n >
B
N 1 But each burnt emitter

produces a spectrum of
secondary emitters..

=
Ll

B

Two functions
determine conditioning

S,(B, U , material, B, 7)
A

N :
Secondary emitter spectrum not

the same as the initial distribution

\
Br

some
of this

s5(B, U, mat’l, B, 1)

A The spectrum of secondaries mostly
determines the operating field. this




We have measured s;(8) during cavity operation.

+ We looked at individual emitters, and measured spectra produced in discharges
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From the emitter intensities at different fields we can measure the spectrum of
field enhancements



The maximum operating field

- Stable operation demands that:

breakdown events cannot create more damage than they destroy.

- This constraint relates the maximum S and the discharge energy.
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Using the model: I) Conditioning

* Breakdown occurs when Ejocqt ~ 7 GV/m
* Only the emitters change, everything else constant.

- Superconducting cavities also condition. SNS vs. Fermilab linac
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Using the model: IT) Materials

* Only materials change, everything else constant.

* The model argues that tensile strength is the dominant effect.
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Using the model: ITI) Pulse length
* Only pulse length changes, everything else constant.

* More damage =¥ lower gradients

» Predictions and data show no dependence on position of breakdown within pulse.
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Using the model: IV) The fully-conditioned state

* When you look at emitters, they are all the same strength.

- Assume s3(/3)=sz([a’)/(e(ﬁ"ﬁeq)/c+1) (F-D cutoff - very sharp g %)

- Images of emitters .................. show emitter strengths
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Using the model: V) Breakdown rates vs. E.

- These are surprisingly sharp, yet consistent with fully-conditioned state

+ Thresholds go like ~£>°.
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Using the model: VI) Breakdown rates vs. pulse length

* Rate vs pulselength is a function of Rate(£) and Epnux(t), (dR 4R dE).

dt dE dt

- Data from the Fermilab Linac and SLAC/NLC prototype follow t°, as predicted.
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Using the model: VIT) Temperature dependence
* A molecular dynamics model predicts little temperature dependence. (Insepov)

- This is consistent with CERN/CLIC results.
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Using the model: VIIT) Gas Pressure and type

» Gas pressure retards field emitted electrons heating broken fragments
This can disrupt the trigger, for low Z gasses.

» Data confirms little effect over >15 orders of magnitude in pressure.

+ We can also explain how SF¢ can affect breakdown.
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Using the model: IX) Dielectrics

* High pressure gasses are an option for muon cooling.

» Realistic muon beams require Gas + High Gradient + Radiation

- Radiation comes two ways: 1) ionizing, and 2) displacive. 1) is our problem.

+ We can measure loss tangents vs. Pressure in a radiation environment.

L : h | 1 " 3
® Wesgoe A998 A
0.1 I 4 Sapphire
Losses are radiation g I |
and pressure dependent. & ¢ A
L
€ 0.001f AL
}<_° ° ‘. e @ before pulse
e .
1 0 S L 1 : 1 L 3 I 3

10" 001 1 100 100 10°
Pressure (Pa)



Using the model: X) Spitfests

- Correlated breakdown events measure breakdown site lifetime.

- Fatigue theory relates strain fo lifetime. A spectrum of strains seems required.
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Using the model: XI) DC breakdown
- This also fits the model, with breakdown at 7 GV/m.
* Most of this data is very old and unreliable, but they did clever things.

* Vacuum and cleaning techniques were not always well done.
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Using the model: XIT) Maximum field vs. frequency

» Each cavity / PS system is unique.

* Our model gives Kilpatrick-like scaling laws.

10° p———r—r—rrrrm

S
>

Tensile stress ~;tensile strength
A A

|

Enhancement
factor, 3

Gradient (MV/m)
3,

100 F

10 X ra s aaaal

Local E field

Field Emission
1 - High current density limitation

Surface field 1

0.1 1
Frequency (GHz)

100



Using the model: XIIT) High Solenoidal fields
- This behavior is consistent with mechanical stress causing breakdown

» The geometry of the cavity seems to matter.

* Other effects (magnetic confinement of damage) may contribute.
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Using the model: XIV) Superconducing rf

* For SCRF Emax = (4 6V/m)/ B, NCRF Emax=(7 GV/m)/ B

* Radiation levels, show SCRF for SNS has similar problems to NCRF.
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Using the model: XV) Atom Probe Measurements

-+ Atom probe measurements show sample failure at approximately 7 GV/m.
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Conclusions
» High Gradient research (high and low frequency, normal and SC) is one field.
* Breakdown should be a science, not an engineering limitation.

* There should be a broad examination of field limiting phenomena.
It should be possible to estimate limits with some precision.

 We have a model, which should be tested and made more precise.

- The model seems to explain all aspects of breakdown phenomena.

- The community needs a solution to this problem.



